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ABSTRACT: The cascade coupling of aryl nitriles, silyldichloromethanes,
and tert-butanesulfinylimines is described, in which silyldichloromethyl-
lithiums, generated from silyldichloromethanes in the presence of lithium
diisopropylamide, undergo nucleophilic addition with aryl nitriles and
subsequent [1,3]-aza-Brook rearrangement to give dichlorocarbanions
bearing α-N-silyl imine (or their 1-azaenolate equivalents), which are then
trapped by tert-butanesulfinylimines via an aza-Darzens-type trans-
formation, affording enantioenriched 2-chloro-2-aroylaziridines after acidic
hydrolysis of the N-silyl imine group. The stereochemistry of this cascade
reaction can be tuned by selecting appropriate silyl groups on the silyldichloromethanes and altering the order of addition of the
imines and the hexamethylphosphoramide additive.

Aziridines are the smallest saturated aza-heterocycles that
serve as key substructures in biologically active agents and

useful precursors for the synthesis of other nitrogen-containing
compounds via regioselective nucleophilic ring-opening reac-
tions and other transformations.1 C-Chloro-substituted azir-
idines are attracting increasing attention because of their
characteristics and relatively broad reactivity,2,3 as presented in
more detail in a recent review.2 Various synthetic protocols of
aziridines have been developed, most of which involve
transferring nitrogen to olefins or adding carbon to
azomethines.4 The aza-Darzens-type reaction is one of the
oldest protocols for adding carbon to azomethines; it involves
adding nucleophiles bearing α-leaving groups to imines
followed by intramolecular nitrogen displacement.5,6 This
approach can be used to prepare C-chloro-substituted
analogues.7−11 For example, using enolates derived from
dichloroacetates,7 3,3-dichloro-1-azaallylic anions,8 or dichlor-
omethyl anions generated from CH2Cl2

9 or TMSCCl2H
10 as

nucleophiles in the aza-Darzens-type transformation gives the
corresponding 2-chloroaziridines. Despite these advances,
methods are still needed to generate structurally diverse,
functionalized 2-chloroaziridines using suitable nucleophiles.
Pioneering work by Oshima and co-workers showed that the

reaction of lithium silyldichloromethane and aryl nitriles
involves a nucleophilic addition/[1,3]-aza-Brook rearrange-
ment12 cascade, affording dichlorocarbanions bearing an α-N-
silyl imine (or their 1-azaenolate equivalents, Scheme 1, 1 → 5
or 6). The anions can subsequently be intercepted by alkyl
halides, benzoyl chloride, or benzaldehyde, allowing con-
struction of functionalized α,α-dichloroketones after acid
hydrolysis of the N-silyl imine groups.13 During our studies

on Brook rearrangement reactions and their applications for the
synthesis of nitrogen-containing compounds,14 we speculated
that the functionalized dichlorocarbanion intermediates gen-
erated from Oshima’s protocol might serve as nucleophiles in
an aza-Darzens-type transformation, resulting in an efficient
pathway to access functionalized 2-chloroaziridines (Scheme 1,
5 or 6 → 8 or 8′). Here, we present our study on this cascade
reaction, which involves the coupling of aryl nitriles,
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Scheme 1. [1,3]-Aza-Brook Rearrangement-Mediated
Coupling of Aryl Nitriles, Silyldichloromethanes, and tert-
Butanesulfinylimines
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silyldichloromethanes, and tert-butanesulfinylimines.15 We
show that the one-pot coupling reaction provides rapid access
to two enantioenriched cis-2-chloro-2-aroylaziridines16 with
high diastereocontrol. This diastereoselectivity is tuned by
adjusting reaction conditions and the silyl groups on the
silyldichloromethanes.
We began our studies by examining the ability of tert-

butanesulfinylimine 7a (R = Ph) to trap the nucleophilic
intermediate arisen from the reaction between lithiated
silyldichloromethane 1a (TBSCHCl2) and nitrile 3a (Scheme
2, eq 1). As expected, the coupling reaction provided aza-

Darzens products 8a and 8′a in 58% yield with 7:1
diastereoselective ratio (8a:8′a, both cis) along with Mannich
product 9a in 31% yield with excellent diastereoselectivity
(>20:1 dr) after acidic workup (1 N HCl). The stereochemistry
of products 8a, 8′a, and 9a was confirmed by X-ray
crystallography.17 The trans-aziridine diastereomers of aza-
Darzens products, which have absolute configurations of (2R,
3S, RS) and (2S, 3R, RS) (not shown in Scheme 2), were not
observed in these or any subsequent reactions. Adding
hexamethylphosphoramide (HMPA) to the reaction acceler-
ated the conversion of Mannich products to aziridines at low
temperature. Thus, first adding imine 7a and then HMPA to
the reaction led to 8a and 8′a in 96% yield, albeit with low dr
(1.5:1) (late addition of HMPA; reaction not shown in Scheme
2). Reversing the order of addition of HMPA and imine
dramatically improved the diastereoselectivity to 16:1 (Scheme
2, eq 2, method A; early addition of HMPA).18 Conversely,
using silyldichloromethanes with less sterically hindered silyl
groups reduced diastereoselectivity, as observed with
TESCHCl2 (1c, 9:1 dr) and TMSCHCl2 (1b, 5:1 dr). Further
investigation showed that using silyldichloromethane 1b in the
late-addition-of-HMPA protocol led to the cascade reaction to
afford aziridines in 95% yield and excellent diastereocontrol
favoring diastereomer 8′a (1:26 dr, Scheme 2, eq 3, method
B).19 In contrast, performing the reaction in the absence of
HMPA gave α,α-dichloro-β-amino ketone 9a as the major
product. Unfortunately, the 9a produced in this way was
contaminated with trace amounts of uncharacterizable silyl

group-containing byproducts that could not be separated by
column chromatography. The contaminants were eliminated by
replacing 1b with 1c (TESCHCl2), giving 9a as a pure
compound (Scheme 2, eq 4, method C).20 The three methods
(A, B, and C) were scaled up 20-fold (>3.0 g scale) using
optimized conditions and found to provide comparable yields
and diastereoselectivities.
Under the optimized reaction conditions, we investigated

substrate scope with respect to aryl nitrile and imine structures.
Methods A and B were used to construct various aziridines,
(2S, 3S, RS)-8 and (2R, 3R, RS)-8′, respectively, with high yields
and excellent diastereoselectivities in most cases (Table 1).
Various tert-butanesulfinylimines derived from aryl and

Scheme 2. Initial Results and Optimized Reaction
Conditions (0.5 mmol Scale)

Table 1. Diastereoselective Synthesis of 2-Chloro-2-
aroylaziridines via Three-Component Coupling

product (yieldc, drd)

entry
nitrile
(3)

imine
(7) method Aa method Bb

1 3a 7a 8a, 90%e (16:1)e 8′a, 96%e (>20:1)e

2 3a 7b 8b, 91% (11:1) 8′b, 99% (>20:1)
3 3a 7c 8c, 61% (>20:1);

82% (>20:1)f
g

4 3a 7d 8d, 92% (16:1) 8′d, 96% (>20:1)
5 3a 7e 8e, 89% (14:1) 8′e, 93% (>20:1)
6 3a 7f 8f, 95% (>20:1) 8′f, 97% (>20:1)
7 3a 7g 8g, 94% (18:1) 8′g, 95% (>20:1)
8 3a 7h 8h, 99% (>20:1) 8′h, 96% (>20:1)
9 3a 7i 8i, 89% (>20:1) 8′i, 92% (>20:1)
10 3a 7j 8j, 94% (19:1) 8′j, 99% (>20:1)
11 3a 7k h 8′k, 91% (>20:1)
12 3b 7a 8l, 77% (6:1) 8′l, 41% (>20:1)
13 3c 7a 8m, 71% (3:1) 8′m, 81% (10:1)
14 3d 7a 8n, 91% (11:1) 8′n, 93% (>20:1)
15 3e 7a 8o, 60% (10:1) 8′o, 76% (8:1)
16 3f 7a 8p, 55% (10:1) 8′p, 78% (8:1)
17 3g 7a 8q, 80% (11:1) 8′q, 85% (12:1)
18 3h 7a 8r, 89% (13:1) 8′r, 93% (>20:1)
19 3i 7a 8s, 91% (11:1) 8′s, 98% (>20:1)

aMethod A: TBSCHCl2 (0.85 mmol), LDA (0.75 mmol), aryl nitrile
(0.9 mmol), HMPA (3.0 mmol), and imine (0.50 mmol) in anhydrous
THF under argon at −78 °C unless otherwise noted. bMethod B:
TMSCHCl2 (1.0 mmol), LDA (1.00 mmol), aryl nitrile (1.10 mmol),
imine (0.50 mmol) and HMPA (4.0 mmol) in anhydrous THF under
argon at −78 °C unless otherwise noted. cIsolated yield of major
diastereoisomer. dThe ratios of 8:8′ were determined by 1H NMR
analysis of crude reaction mixtures. eReaction at 10.0 mmol scale (>3.0
g scale). fUsed 2.5 equiv of 3a, 2.3 equiv of 1a, 2.0 equiv of LDA, and
8.0 equiv of HMPA. gProduct was unstable under standard workup
and purification conditions. hOnly trace amounts of aziridine were
observed.
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heteroaryl aldehydes were successfully applied to the cascade
process with 3a and 1a/1b (entries 1−10). The reaction
tolerated aryl imines bearing electron-withdrawing and
-donating groups at the para position, as well as ortho- and
meta-substituted aryl imines. Unsubstituted and substituted
phenyl cyanides were suitable coupling partners (entries 12−
19). However, the reaction was incompatible with heteroaryl
nitriles, such as 2-furonitrile, 2-thiophenecarbonitrile, and 2-
pyridinecarbonitrile, or with aliphatic nitriles, such as tBuCN,
nPrCN, and BnCN. Reactions with these nitriles gave no three-
component coupling products, leaving the imines intact. The
substrate scope of method C for preparing α,α-dichloro-β-
amino ketones 9 was also investigated (see Supporting
Information).
Next, the dechlorination of 2-chloro-2-benzoylaziridine 8a

was examined (Scheme 3). When excess SmI2 was used (5.0

equiv),21 ring-opening and subsequent dechlorination of 8a
proceeded efficiently to afford β-amino ketone 10 in 93% yield.
This SET reagent-mediated reduction could be stopped at the
stage of ring-opening of aziridine by reducing the amount of
SmI2 to 2.5 equiv, providing α-chloro-β-amino ketone 11. In
the presence of K2CO3, compound 11 could be further
converted to cis-2-benzoylaziridine 12 in 99% yield with
excellent diastereoselectivity (>20:1).22 Conversion of 8a to
12 was achieved in one pot with no loss of yield or dr. Similar
conversions were also successful for α,α-dichloro-β-amino
ketone 9a: both β-amino ketone 10′ and cis-2-benzoylaziridine
12′ were obtained in high yield and excellent dr.23

We rationalized these stereochemical outcomes based on the
well-known HMPA-mediated nonchelated open transition state
(TS-1, method A)24 as well as the lithium-chelated chairlike 6/
4-membered bicyclic transition state (TS-2, method B).25 On
the basis of these transition states, a bulky silyl group, such as
TBS, should strengthen the facial selectivity of 1-azaenolate in
its approach toward the imine in TS-1, whereas a less bulky silyl
group, such as TMS, should facilitate bonding of lithium to the
nitrogen of the 1-azaenolate in TS-2. Following C−C bond
formation, stereospecific 3-exo-tet ring closure of the initially
formed adducts should occur via conformers-1 and -2. In these
conformers, nonbonding interactions between the N-silyl imine

groups and the R groups are minimized, leading to the
observed cis-aziridine diastereomers 8 and 8′, respectively.

In summary, we have developed an efficient three-
component coupling reaction for stereoselective synthesis of
enantioenriched 2-chloro-2-aroylaziridines. The cascade trans-
formation involving nucleophilic addition, [1,3]-aza-Brook
rearrangement, and aza-Darzens-type transformation enables
rapid construction of both cis-aziridine diastereomers from the
same coupling partners through selection of suitable silyl
groups on the silyldichloromethanes and appropriate timing of
HMPA addition.
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